Hawai`i’s government and educational establishment have rushed to embrace genetic engineering technology. But on the ground, things keep going not quite as planned.
In the movie Jurassic Park, mathematician Ian Malcolm (Jeff Goldblum) demonstrates Chaos Theory to paleobotanist Ellie Satler (Laura Dern) by using drops of water falling on a human hand. No two droplets run down the hand the same way; factors too small and numerous to control always combine to send the droplets on unpredictable paths. This, Malcolm explains, is why Jurassic Park should never have been built: no matter how carefully it is planned, chaos will inevitably set in.
Just then, of course, the power fails, the tour jeep is stranded, and all Jurassic breaks loose.
This, in a nutshell, is the argument that many opponents tend to make against genetically modified organisms.
No one, so far as we know, has actually attempted to re-grow a dinosaur. But in the past decade, a huge number of brand new organisms have been created: plants that make their own insecticide, mammals that glow in the dark, fruit trees containing virus genes, tomatoes with flounder genes and potatoes with chicken genes. Among the GMOs that have already entered commercial production-are weed-killer-tolerant and/or insectidal corn, soybeans, rapeseed (the source of canola oil), flax and cotton, which have been incorporated into food products from baby food to mayonnaise--none of which are required to be labeled as containing GMOs. Researchers have already introduced, or are currently testing, transgenic organisms including catfish, salmon, raspberries, sunflower seeds, walnuts, apples, hops, grapes, tomatoes, potatoes, peppers, onions, peanuts, watermelons, cranberries, plums, strawberries, broccoli, eggplants, carrots, cucumbers, lettuce, peas, sweetgum trees, poplars, spruces, bluegrass, zoysia grass, sugar beets, sugarcane, orchids, gladioli, petunias, chrysanthemums, carnations, rice and tobacco.
Hawai'i Leads the Way
While Europe, Canada and Japan have followed, at best, a “go-slow” approach to GMOs, Hawai`i’s educational and governmental establishments have largely embraced them. “Our growing biotechnology industry and its sectors--agriculture, marine sciences, human therapeutics, and the environment--are important sources of quality jobs and prosperity for the state,” Governor Ben Cayetano told delegates to the annual convention of Biotechnology Industry Organization (BIO) last spring. “Recognizing this potential, we formed a partnership--government, education and the industry--to develop a cohesive plan...BIO provided a great deal of assistance in the formulation of a competitiveness strategy for Hawaii's industry, completed in December 1999.....”
Hawai`i’s scientific community has already positioned itself at the forefront of this effort. UH-Manoa researchers developed “Honolulu transgenesis,” a method of transplanting genes into mammals, which could be a licensing goldmine. Among the first subjects of the technique were the university’s famous (or infamous) phosphorescent mice, which glow under ultraviolet light because of a transplanted jellyfish gene. The jellyfish gene was chosen simply as a “marker”: it produced an easily detectable trait that proved the gene transplant was successful. Theoretically, virtually any gene could be transplanted using the technique.
“Possible applications could include using the mouse as a model for studying the function of human genes,” speculates one press release. “Also, more organs could be available for human transplant if pig genomes could be modified so that the corresponding pig organs wouldn't trigger a critical immune rejection in patients who receive them.”
Using similar techniques, Oregon researchers recently created glow-in-the-dark monkey embryos, suggesting that the feasibility of gene transplants in humans.
Nor is Hawai`i’s transgenic push limited to mammals. One goal listed on UH’s Sea Grant website, for instance, is the production of commercial gene-engineered shrimp. UH researchers have been looking into a transgenic solution to the tomato wiltspot virus, which affects at least 225 different flower and fruit species. An online description of a UH-Manoa course entitled “Biotechnology” is devoted almost entirely to transgenic topics such as “Recombinant DNA technology to produce new products in bacteria and fungi, “Production of human insulin and growth hormone in microorganisms,” “Transgenic fish,” “Engineering plants for herbicide and disease resistance,” and “Gene Therapy.” To its credit, the course also looks at “Ethical issues in biotechnology” and “Environmental aspects and concerns.”
The state is also attracting corporate research dollars. GMO giant Monsanto has applied for a federal EPA permit to grow experimental insecticidal corn here, for instance. Some commercially-approved insecticidal and herbicide-resistant corn varieties may already be in production by Hawai`i’s burgeoning seed corn industry. The World Rainforest Movement recently reported that an Australian company, ProBio, planned to plant experimental gene-engineered eucalyptus trees in Hawaii.
“There have been over 1,200 field tests applied for in Hawaii alone--most of it corn, but also rice, anthuriums, dendrobiums, and coffee with with lower caffeine levels,” notes retired Indiana University researcher Marti Crouch, who helped develop GM rapeseed before leaving the field because of concerns about the technology. She adds, “A lot of those applications don’t say specifically what kind of genes have been inserted, because it’s considered confidential business information.”
The most prominent transgenic plant on the Big Island so far remains the GM papaya. The UH and Cornell researchers who developed the new papayas have touted them for “saving” the local industry from papaya ringspot virus, which had devastated Big Island papaya fields.(See Part 1 of this series, Hawai`i Island Journal, May 16-21, pp. 8-10: the first GM variety, red-fleshed UH SunUp, was crossed with the popular non-GM Kapoho Solo to produce UH Rainbow. Both varieties contain Ringspot virus genes that make them virus-resistant. But their commercial introduction has been accompanied by a crash in papaya prices, and key markets in Japan and Canada have yet to accept it for export.
Huge Benefits, Unkown Costs
GM technology’s potential benefits are enormous: new medicines, cures for genetic diseases, healthier and more productive crops. Proponents argue that the risks to the environment of changing a few genes are less than those of using more pesticides or breeding entire organisms.
Many environmentalists and some scientists, however, argue that genetically modified organisms (GMOs) are flooding into the environment and the human food chain faster than regulations can be created to insure those products’ safety; that huge numbers of people are eating proteins no human has ever ingested before; and that inevitably, unpredictable and regrettable things are going to happen. Opponents can already point to some examples of Chaos Theory in action. One study indicated that genes from an insect-killing bacterium, bacillus thuringiensis (Bt), found to be harmless to mammals by itself, was linked to intestinal abnormalities in rodents when the gene was transplanted to potatoes. Another researcher found that pollen containing genes from the same bacteria, could impair or kill monarch butterfly caterpillars on nearby milkweed plants. And of course there were the infamous Taco Bell taco shells, found to contain a strain of GM corn approved only for animals.
Crouch notes that when a gene is inserted for a given effect, researchers can get more than they ask for: “Sometimes the researcher is adding a protein and the researcher thinks he knows what it does, but it creates other changes as well...sometimes it only shows up when the plant has been grown for a while. It may only show up under certain environmental conditions that weren’t encountered during the field tests....”
GMO opponents point out that among most common of the early GMO releases have been crops genetically designed to be herbicide tolerant--“Roundup-ready,” they are called--so that even more herbicides can be applied.
Papaya Meets Nature
In many ways, the GM papaya seems a best case scenario for a transgenic organism. It fulfills an urgent need by countering a virus invasion of plague proportions. If fruit from UH Sunup or UH Rainbow, the two commercial GM papaya strains, are tested for transgenic materials, only the seeds test positive. The plants contain only three alien genes. The virus genes they contain are also present in non-GM fruit that have been exposed to ringspot. Ringspot can only be contracted by other plants, not by humans.
Still, the GM papaya program has had its share of mishaps and missteps. Environment Hawai`i reported that in 1998, wind-born GM pollen may have escaped from an O‘ahu test site, due to the accidental presence of male papaya plants in the site. (Papaya plants come in three sexes: male, female and hermaphrodite. Male plants are more likely to spread pollen over long distances.)
The test program also demonstrated that while the GM plants were generally virus-resistant, they were still susceptible to other pests. One of the GM strain’s ancestors was less resistant to a common fungal infection, so researchers regularly sprayed the new plants with a fungicide called Dithane. At eight months, the plants were hit by a new pest: leafhoppers. Malathion, a powerful insecticide, kept the bugs at bay for only four months. Then, as a Tropical Fruit Report article by Timothy Wenslaff and Robert V. Osgood noted, “Gradually, the leafhoppers became resistant to Malathion, then to Pyrellin [another insecticide].”
To prevent disaster, the researchers got an experimental permit to apply another insecticide called Provado, which finally brought the leafhopper plague under control--but only after the loss of several trees.
Puna farmers have already reported scattered cases of viruses overcoming the GM papaya trees--especially young trees. But UH agronomist Steve Ferreira claims that, so far, the ringspot virus hasn’t shown any signs of overcoming the resistance to mature trees in any cases that he’s investigated.
Papaya Meets People
Chaos Theory really kicked in, however, when GM papayas encountered non-scientists.
According to Ferreira, the original plan was to cut down all non-transgenic papaya in lower Puna and replace them with GM papaya. After a year, the ringspot virus would have disappeared for lack of a host, and the lucrative Kapoho Solo could have been re-introduced.
Had such a plan been followed, concerns about a GM0-resistant virus evolving would have been minimized, as would concerns about the accidental release of GM genes into the non-GM papaya population. GM and non-GM papaya might never have met.
It just didn’t happen that way.
Hawai`i’s most lucrative papaya market, Japan, refused to accept GM varieties without more thorough testing. Japanese-owned packing houses lobbied the legislature for a quarantine plan using large buffer zones of GM papaya fields to shield fields of Kapoho Solo for the Japanese market. To implement a pilot quarantine project, farmers say, the state took over GM papaya seed stocks that had been slated for distribution through the Papaya Advisory Committee, which had paid for the seed with farmers’ mandatory dues.
Some angry farmers boycotted the PAC; others managed to aquire GM seeds before they were officially released, jeopardizing patent negotiations.
Mike Durkin, the only farmer sued by UH so far for patent infringement, says he planted seeds from GM SunUp fruit he’d found at a local farmer’s market.
“Basically they’re catering to the big guys, the big packing plants, and they don’t even care what happens to the little farmers,” he believes.
Durkin accuses UH officials of “Unclean hands.... They can’t come after me for unauthorized use of the material, when they were engaged in greater unauthorized use themselves.” He says that one UH “test field” was actually a commercial farm, and that GM fruit had already been sold to grocery stores before he planted his first seed.
Many Puna farmers refused to comply with the Department of Agricultures’ plan to eliminate non-GM papaya outside the quarantine fields, when there was no assured market for the GM varieties. They pointed out that even if they cut their healthy Solo plants, diseased fields still existed in neighboring districts and feral papaya had spread into to nearby rainforests. Some farmers who did acquire GM seeds ended up cutting the trees down after GM papaya prices plummeted.
Meanwhile, even science seemed to be succumbing to commercial spin-doctoring. As part of her Master’s thesis, Cornell papaya researcher Carol Gonsalves surveyed Puna farmers who had applied for papaya seed. Before her survey results were completely tabulated, she used “trends” in them to write an article entitled “Farmers say ‘Yes!’ to Transgenics.”
Farmers and state officials finally reached a compromise, in which the state would eliminate papayas in abandoned Puna fields and farmers would be patrol their non-GM fields to eliminate new cases of the virus.
So far, this compromise seems to be working. Healthy fields of GM and non-GM papaya are now growing in Puna. But the compromise virtually assures that both the virus and the GM papayas will remain in the environment for the foreseeable future.
Larger Issues
Some of the issues involving GMOs are actually basic to all modern farming. The leafhopper incident, for example, illustrates one concern that applies to both conventional pesticides and GMOs. Unless a spray or a gene splice is 100% effective in stopping the target pest, then the survivors may multiply, spawning a new strain of resistant superpests. That danger is particularly worrisome with another popular line of GMOs: the caterpillar-killing cotton and vegetables spliced with genes from bacillus thuringiensis. Nobody argues that Bt itself is unsafe for human consumption; in fact, organic farmers have been using the bacteria for years to kill caterpillars. But organic farmers only dust with the bacteria for brief periods as needed, reducing pests’ exposure time. Bt GMOs produce insecticide constantly, increasing the chance of a Bt-resistant caterpillar evolving--and depriving organic farmers prematurely of one of their most valuable tools.
Agribusiness has long been criticized for reducing the natural plant and animal diversity that once helped to protect against widespread crop failures. In Hawai`i’s pre-GMO papaya industry, for instance, the vast majority of papayas were a single variety, Kapoho Solo, planted in a single Big Island district. These were ideal conditions for a plague: only a single parasite was needed to devastate an entire industry.
“If you step back and say , oh, maybe the problem is that you have giant monocultures and you’re stressing the environment with pesticides, then your solution, to have a healthy, diverse agricultural environment, solves several problems at once,” believes Crouch.
Ferreira sees GMOs as a way to engineer “artificial diversity” into crops. He says that while Rainbow and SunUp are resistant only to the local strain of ringspot virus, the next generation of GM Papaya will incorporate gene proteins from ringspot strains from all over the world, guarding against new strains of the virus.
Crouch isn’t buying it. “The idea of having resistance to several viruses all in one papaya variety sounds like a disaster to me, because the mechanism that allows the papaya to resist all the viruses will be the same,” she says. “When one virus overcomes that mechanism, then all the viruses will be able to do the same.”
The multiple-gene-transplant strategy may have another danger. Ferreira says the actual ringspot viruses from around the world are being kept at Cornell, to prevent any danger of contaminating Big Island crops. But research reports available on the Web show that the experimental multi-transgenic papayas are being field tested here.
“From what I understand, viruses are able to exchange genetic information by recombination when they both infect the same host,” notes Crouch. Viruses are strings of genes that take over the host cells’ DNA to reproduce more viruses. If one virus overcomes the papaya’s immunity, its genes could mix with the transplanted virus genes already in the papaya cells and produce more diverse viruses.
Ferreira sees large monoculture crops as the price we pay for high food production and mass distribution.
“The issue is quality and uniformity for the person who’s processing,” he says, noting that bakeries require flour that behaves the same way every time, and fabric makers need cotton that is uniformly white.
“That’s a sort of chicken and egg argument,” reacts Crouch. “When did the consumer become so concerned with uniformity? Export-oriented agriculture basically advertised consumers into that position, so they could be educated out of that position into an appreciation of diversity. And in fact, the organic sector of agriculture is the fastest growing market in the world.”
Other questions about GMOs apply to basic rights, freedoms, and necessities. When genes can be patented, who controls the information in one’s own body? Can large corporations, for instance, use gene ownership to gain control of the world’s seed supply, stopping farmers from saving back seed from previous crops? Like any powerful tool, transgenesis may ultimately be as good or dangerous as the social institutions that govern it. Right now, it may be at its most alluring and most frightening, because those social institutions haven’t evolved as fast as the technology.
Meanwhile, back on the ground, some farmers are looking for a market and hedging their bets, as farmers have always done. In addition to his fields of GM SunUp, Mike Durkan is currently harvesting the first commercial papaya crop to be certified by the Hawai`i Organic Farmer’s Association. In the midst of chaos, he seems to have found a sure thing: a Canadian buyer has already purchased the whole crop.
“That’s the first time I’ve ever been able to contract a crop and advance-sell it,” he says.